$\|$
The Computer That Leaps Through Time The K Computer can perform $10^{16}(=10,000,000,000,000,000)$ calculations per second (10 petaflops)*. This is an enormous number of calculations. If a human being performed these calculations by hand at a rate of one calculation every second, it would take 300 million years to complete. 300 million years ago, human beings had not yet evolved, and the Japanese archipelago did not exist. * K (kei) refers to the number 10^{16} in Taiwan, Korea and Japan

Illustration: Yuki Akimoto (Mabuchi Design Office)

Torrent: :The Newssletter of the Computational Materials Science Initiative (CMSI) No.2, May 201

Computational Materials Science Initiative
office Institute for Solid State Physics, The University of Tok

Production Assistance: Sçi- Tech Communications inc.
Design: Takada office inc.

Young CMSI Researchers

1st CMSI
 Poster Award Recipients

"Torrent" is a forum for CMSI interchange. On January 5-7 2011, Workshop: "Computational Materials Science: Challenges and Prospects" was held. This workshop was organized jointly by ISSP, CMSI and the Next-Generation Functional Nanomaterials for Information Technology*. The three winners of the Poster Award at the workshop came together to discuss their individual research projects, their experiences using supercomputers, their interchange at CMSI, and the ties between young researchers.
*ISSP: the Institute for Solid State Physis. The University ff Tokyo.
Next-Generation Functional Nanomaterials for Information Technology
and
Nex-Generation functional Nanomaterial for Information Technology:
a group in Grand Challenges in Next-Generation integrated Nanoscience Projec.

- Poster Award Recipients

Takahiro Misawa Researct Associate
Department of Aplied Physics. School of Engineering, The University of Tokyo Hidemaro Suwa 3rd year Ph.D candidate,
Department of Anplied Department of Applied $P h y s i c s$

Hayato Shiba

Research Assosiate, Materials Design and Characterization Laboratory, Institute for Solid State Physics,
The University of Tokyo The University of Toky

- Moderator

Munekazu Ohno Associate Professor, Faculty of Engineering,
Hokkaido University

You're all the type of people who love

 theory but also want visible outputOhno: Dr. Misawa was awarded the Grand Prize Poster award for his poster entitled Analysis of an Effective Model for Multivaria Superconductor Using Carlo Method."Mr Sariational Monte Carlo Outstanding Poster award for his poste entitled "Markov Chain Monte Carlo Method without Detailed Balance."Dr. Shiba wa awarded the Judge's Special Prize for his poster entitled "Biomembrane Molecular Simulation That Explicitly Includes Solvent Molecules in an Exronto Achieve Massively Parallel Computing."
By coincidence,
By coincidence, all three of you are but I imagine that you each had different motivations for going into that field. Could you begin by telling us a little about yourselves?
Misawa: Since my undergraduate days, I enjoyed thinking and computing on my own so I thought I would go into theory. It was after I entered graduate school that I began to study condensed matter physics. I liked the fact that it's easier to compare calculations and experimental results than in the case of elemental particles and atomic nuclei. Even the research Ive done up to now in the area of condensed matter physics has been close to experimentation. field in which you can enioy "things that can be known." Elementary particles are not really familiar to us, and in chemistry and biology you need to establish a lot of hypotheses and you don't really feel that you've understood things. But in condensed matter physics you can consider problems that seem close to you, working from axioms and principles with only a few hypotheses. In my undergraduate days, had to conduct experiments in the course of researching for my graduation thesis, so when I entered graduate school I wanted to study theory. In the laboratory, we use primarily the Monte Carlo method, and since I became affiliated with the laboratory Ive been hooked on how interesting that

Magnetic properties of low-energy effective mode for iron-based superconductors derived from first-principles downfolding method Microscopic origin of diverse magnetic ordered moment-

Takahiro Misawa Research Associate Department of Applied Physics, School of Engineering,
The University of Tokyo

One of the central issues in recent solid-state physics is a strongly-correlated electron system where energy scales of interactions to those of band widths. In this system, it is known that the strong interaction mong electrons induce many intriquing phenomena such as high-temperature superconducting phase.
It is one of the most important objectives of solid-state physics research to understand hese intriguing phenomena from the "first-principles Hamiltonian" in solids namely, the Hamiltonian that includes the periodic potential created by atoms and e Coulomb interaction among electrons. Because of huge degrees of freedom in the first-principles Hamiltonian, it is impossible solve this Hamiltonian exactly even with he largest and fastest supercomputers hat exist today. For this difficulty, up n the low-energy part of the systed nd derive low energy effective model that reproduces intriguing phenomen observed in solids. Although this method has succeeded in explaining many intriguing phenomena in solids, in most cases the parameters of the effective model were determined "by hand," and its validity of these parameters is unclea nd under hot debates. In recent years, we developed "first-principles downfolding method" as a bridge linking the first-principles Hamiltonian and the effective model. I this method, first, we calculate globa band structures of solids based on th frst-principles Hamiltonian. Then, in order

- 1 le liminate the degrees of freedomin, we ligh-energy part, which is way from the la be bis constrain ndom phase approximation. By using his method, without a priori hypothesis, we can determine the parameters of the fective model only from the structures of solids. By analyzing this effective mode with high accuracy numerical calculation ethods such as multivariable variationa onte Carlo method, we can clarify and predict the electronic properties of solids. In this study, we apply this method to recently discovered iron-based superconductors. We have shown tha differences in interaction parameter induce the diverse magnetic properties of he iron-based superconductors (see figure). This is the first study to clarify the microscopic origins of these diverse calculations.

Comprison between theoretical magnetic
 epresents the scaling parameter λ that
uniformy scales the interaction parameters. Ou unformly sales sthe interaction parameters. OUT withe experiment.

Markov Chain Monte Carlo Method without Detailed Balance

Hidemaro Suwa 3rd year Ph.D candidate,
Department of Applied Physics, Department of Applied Physics, School of Engineering, The University of Tokyo

The emergences of phase transition and strongly correlated states, in which we are very interested, include an abundance of novel physics, and they are expected to design and so on. The issence the physical phenomena is that they are multi-particle (have multiple degrees of freedom), and it is not effective to conduct rough approximation that considers only average quantities among particles. Only through the skillful use of computers is it possible to analyze these problems that are difficult to solve using manual calculation by human beings. However, these problems cannot be solved using a shotgun approach with computers on a large scale; the key is how cleverly and efficiently they can be used. This also applies to the Markov chain Monte Carlo method with which we are working. This method, in which muttiple has great general applicability and it is becoming indispensable not only in physics but also in various other fields, such as, chemistry, biology, medicine, statistics and economics. Almost all of the Markov chain Monte Carlo methods up to
ned a condicion of detailed balance," and for more than half a century the method continued to develop within he boundaries of this condition. However he convenience for computation: it was not a fundamentally necessary condition. Accordingly, we broke with what had been up to now established and devised a new algorithm that can calculate correctly even without satisfying the detailed balance. This algorithm uses a geometrical proces called as "weight filling" that definitely minimizes the average rejection rate which is the cause of reduced efficiency making it even zero in most cases (see figure). This greatly improved calculation efficiency to anywhere from several times to more than a hundred times as much a that by conventional methods. Applying the algorithm to spin systems, which are quantum-mechanical problems, resulted in the discovery of a new phase transition This method is applicable to alidost all of the Markov chain Monte Carlo methods that are used in various fields, and it is expected to make wide-ranging contributions in the future.

Comparison of the "weight fling" pro
rate is reduced to zero by our method
which I won the award was general modifications to the Monte Carlo method. I'd one day I suddenly got the idea
Shiba: The other two are studying quantum systems, but I'm studying classical systems exclusively. I had a vague idea that I wanted to go into theoretical physics, but in the course of graduating from undergraduate school I was assigned to an experimental research laboratory. It was there that I encountered experiments of soft matter and linear non-equilibrium idea of "first just trying something" was interesting and felt that there were aspects that were distinct from theorizing At the laboratory I worked at in the master's program, we did full-on numerical calculation, so I began conducting simulations in which first I'd try something and then I'd try to figure out the results that were unexpected. Ohno: So you all like theory and enjoy trying to understand things starting from axioms. But you also all want the output to be something that you can see. That's what you all have in common.
Do you collaborate with people conducting experiments, such as by having them use the output from calculation in their experiments?
Misawa: I solve the effective models for certain materials, so I hold close discussions
with the people conducting experiments on the interpretation of the experimental facts and whether or not they are consistent with the theory
Ohno: I
field of material conduct calculations in the with the people conducting collaborations often find there's a wide gap between what they expect from calculations and what is actually possible through calculation, and this gap can't be bridged. What is it like in condensed matter physics?
Suwa :Its the same. If theres something in the model presented by the theoreticians that can't be explained, the experimenters are actually pleased. The theoreticians try to resolve it, but the experimenters use it as a umping-off-point.
probably be in
simple system, but with a real-world system it s hard to put together a simulation that will produce experimental results.
Dr. Shiba, you work on classical molecula dynamics. Do you get the impression that using the new supercomputer will produce results that approach what is
Shiba: With classical model simulations, it easy to expand the scale of calculations to match the capacity of the computer being used, so it may be possible to get to the point desired by the experimenters to some many calculations on an unlimited basis, so it's a problem that depends on what you select It's not that it's impossible technically, but I get the impression that we need to consider more carefully exactly what calculations should be done.
Ohno: Is there anything that you on the calculation side would like from the experimentation side?
Shiba : Up to now, the collaboration has been possible only when the experiments have been done for those things for whic calculations could be carried out. Now however, there's a strong sense that calculations are trying to keep up with experimentation, or that calculations are performed in order to further develop what's being done in experimentation. I closer to one another due to the coming cale of computing So collaboration important important.
Misawa: In quantum systems, optica lattices have recently become popular, and collaborations are underway between theoreticians who are working to solve the conducting model and people who are It's even becoming possible to vary contro parameters at one's disposal in experiments as in computational studies.

What are the expectations for the

Computer, and what will we be able to do with it?

Ohno: I'd like to ask you about you involvement with supercomputers. Hav you ever thought. "I'll bet I could do
"l'd like to come up with a variety of venues to connec young researchers with on another. Torrent is on example."

Moderator

Munekazu Ohno Faculty of Engineering Hokkaido University
such-and-such if I had the K Computer?" Suwa:In classical systems, if it were possible to use it for mesoscopic system simulations, might be possible to study tran henomena and so on more carefully.
shiba: When it comes to soft matter, there's a gap between macroscopic description of hydrodynamics and the microscopic description of phenomena, and it's dificult to riage this gap. I think efforts to bridge the gap are needed, but on the other hand I'd like to find a single method that would enable us to punch right through it. calculations that are well puarallelized few calculations that are well parallelized, and parallelizing the calculations that can be used with the broad based models that I want to use To master the K Computer, method themselves will need to be developed. Misawa: If the K Computer uses seve tens of thousands of dedicated cores, it would be easy to search for many things systematically.
Ohno: Normally we are conducting esearches within the machine power we have. So, if a new large-capacity machine is addenl given to us, it's true that it would be a bit difficult to answer when someone asked us "OK, now what's your research opic?. Io use the K Computer, we'll need to mprove our knowledge of computer science apart from our direct research topics.
Its getting so that you can't produce results
you know a lot about condensed matter physics. On the other hand , just because you know a lot about computers doesn't mean you can produce results in condensed matter physics. How do you think that balance hould be maintained
Suwa:Rather than mastering the details of paraic computing methods

I'd like to work on Shiba : For the past several months, I've been doing nothing but parallelization, and I've used supercomputers here and there. And Ive realized that it's important to actually bucke down and get hands-on expery
Ohno: What percentage of your time do you pend developing code and aldorithms and conducting parallelization processing? And what about with regard to the research for which you won the award?
Misawa: I use partly resources created by other people, so the amount that I create myself from scratch comes to about 20%. It was actually the computing time that took onger. Computation time is proportional to N where N is system size, so if the system size doubles, the computation time will increase eight-fold.
Shiba: I began conducting parallel computing in earnest in September of last year, and I was practically a hermit for three nonths. So for this project it was 100%. Laugh
Suwa: My normal approach up to now has

An endless variety of cell membranes, red blood cells and other membrane structures formed by molecular assemblies can be found in the body. These membrane structures are molecular assemblies that have lipid molecules and surfactants that accompany hydrophilic and hydrophobic groups as their main structural componens. from the properties of the individual molecules tom their macro structural formation uneven distribution of various components within the cell membrane and so on, and they constitute a boundary area that is being approached from not only biology but chemistry and physics as well. These materials are one example of the soft matter accompanying nonequilibrium phenomena that are controlled by large spatial and temporal scales. They are currently the subjects of wide-ranging exploration, from carefully controlled scientific experiments to practical industrial applications.
From a physics perspective, the effect on membrane structure, form transition and time-dependent dynamics of the properties of the two-dimensional mbine flow, crystallization and so on have been dehated since the 1980s. The "coarse-grained molecular dynamics method" is a method that has been used since the 1990s as a convenient way of studying large spatiotemporal scale dynamics. As it is difficiult to include all of the all-atom molecules in the simulation, this method uses a single particle to represent the degree of freedom of multiple atoms to the extent that this is able to reproduce the macroscopic
structure and dynamics.
Particularly in calculations in the field of chemistry, methods of solving the novernent of membrane molecules as pa of the same system as solvent molecules have become quite popular in order to study the effect of environmental solvent sresure) However there (os motic hat need to be explined fiom a physis perspective as well We decided to incurde the solvent into a meshless membran model with a large degree of coarse graining as part of the same system. The meshless membrane model is a highly idealized coarse-grained molecule model based on membrane elasticity theory, in which the shape of the monolayer membrane is formed spontaneously. It enables membrane cleavage, vesicle self-assembly and fusion and so on to be reproduced. Our aim is to use this model to gain a complete picture of nonequilibrium phenomena, such as the structura transitions of the membrane in which
solvents are involved.

In the midstof nearly milion solvent particles (nor
shown), the paricices seded that thave shown), the particles (red) that have been made
coarse-grained based on a meshless membran model form a uasi itwo-dimensionsal membran
structure. Creating artional wisuliziten structure. Creating a ational visuliazation method for
solvent degree of freedom is as a an important research topic.
been to take something I know nothing about and tackle it starting with an analysis of methods, in order to try to understand it
all at once. So my main focus is on program and algorithm development.

Physicists need to be flexible: crude in the micro scale but refined in the macro scale

Ohno: The advantage of CMSI is being able to work with people from different fields. What is your impression of the other fields? Does the philosophy that you have when he field? Shiba:
hiba: When researchers studying the soft matter in physical systems look at molecular
dynamics, they construct bold models. But I get the impression that molecular science researchers construct rigorous models and bring them to a supercomputer.
Ohno: I see. So the term "first principle" is used differently in molecular science and materials science. Apparently chemical science researchers use rigorous calculations that take into account exact electron correlation, and I understand that they refer to that as "first principles."
Suwa: In a sense, physicists are sometimes on the casual side. (Laugh)
Ohno: In physics, you often don't try to be any
more rigorous than is necessary As result its more iggorous than is necessary. As a result, its realm and exacting in the macro realm eealn and exacting in the macro realm interchange with other fields? In materials and condensed matter physics we sometimes study similar materials, but the two fields also have different academic societies, so you couldn't say there's much interchange. But it's interesting once you start working together, as you get a lot of different perspectives. Wouldn't you agree? Suwa: The Monte Carlo method that I'm working on is employed in a broad range of fields, and there's a great need for it. I think listening to the views of a lot of different people would give you new ideas about the method. The Monte Carlo method originated spread from there Since the 1990s it's been used in statistics and other fields as well.

But it took 40 years for that to happen. think that having as much interchange as possible with other fields and having a positive effect in enabling methods to spread more quickly. I'm personally making an effort to check out the methods used in a variety of fields.
Ohno:Mr. Suwa's work has a great ripple effect, so itll be interesting if it attracts the attention of people in other fields.
Suwa: What's difficult about interchange between different fields is the fact that the reason that interchange hasn't made much
progress.
Shiba: In physics, the models are sometimes changed completely, but in chemistry the models of each atom are put into a library and used over and over. Molecular dynamics in physics is conducted from a stance of flexibility. I think constructing a framework for molecular dynamics that coss would be useful for both sides.
Suwa: Physicists are interested in mechanisms, while chemists are interested in the materials themselves. When modeling as well, physicists create abstractions that omit the details, while chemists use the properties of atoms and molecules as is. shaw. Don't you ind thal many quantum chantitative attributes? In physics many people adopt the stance of trying to think of the minimum model that will enable you to understand the essence so their approach is qualitative. The research for which I won the award is close to quantum chemistry and its goal is to create an actual model based on the first principles and solve it completely. But even in that effort, I have a strong awareness that I need to identify the essence that is concealed within that mode. In that sense, I guess it's a physics mode I'm greedy. (Laugh)

Enabling interchange with different
 fields, information sharing and links

between young researchers at CMSI
Ohno: What do you hope to get from the interchange provided by CMSI, regardless
of whether or not you use supercomputers? Misawa : Id love to get large-scale computing expertise from other fields. Although it would be difficult to turn it into an academic paper, Id like to be able to exchange information. At the first CMSI research seminar, 1 got to give a presentation to people I would not normally meet, and that was stimulating.
Ohno: It's been six months since CMSI was founded, and there is starting to be a demand for greater knowledge about the techniques of computer use. What do you
think would prove useful in this regard? Suwa: Open programs for example. Ohno : If we created a map individual research topics but for method-based one, for example one based around the Monte Carlo method as a wased of showing that CMSI includes these kinds of research topics, I think that would attract people based on the method. It's interesting to exchange information with people who use different methods, so I think it would be good if there were a map that could serve as a catalyst
Suwa:Id like to see small-scale meetings where the discussion could really get down to the nitty-gritty.
Shiba:I agree. I wonder if it would be ossible to have vendors to participate in that kind of meeting as well.
Shiba : It would be great if
expertise for use when in we could share and topics for consultation. Normally things end with no one being able to see what was discussed or the results of the discussion. Ohno:In the case of experiments in so cases the techniques and so on are included in the written paper, and sometimes they're the essence that's needed to view the phenomenon. However, information like such-and-such a computer has a certain peculiarity is not made public. On the contrary, it's kept hidden.
Suwa : It would be great if there were a forum where everyone could freely upload that kind of information and people could consult it if they encountered a problem. I hink having a \& A section on the CMSI Ohno: It would be good if the
oung researchers could be expanded as well. Suwa: Id also like to see method development get more recognition. The development of methods doesn't get much annowledgement as compared to overseas. Ano:I get the impression that its difficult to get furang for method development. But ithout methods, there would be no progress.
Lastly, I'd like you to tell us your expectations for CMSI and any candid advice you may have.
Misawa: It's not clear to me what shape the rganization is taking
Shiba: I don't have a clear overall picture of what gets decided, and in what manner mission of CMSI was to discuss and decide who should use the next-generation supercomputer and for what purpose. Subsequently, a variety of objectives were added, but I'd like the focus to be on how to select embryonic research in a way that will make everybody happy.
Suwa:In that case, by all means let me use the next-generation supercompute
Ohno:In April 2011, use of the K Computer will begin at last in Kobe. In the near future, we'll have to nail down what will e needed after that. Each generation of a supercompter lasts five years, so Id like you to not be shy about speaking up as soon All: Understood. We'll do that II: Understood. Well do tha
Ohno:I have high hopes for your work at Recor

解 on February 24, 2011 at the
Department of Science, The University of Tokyo
Text : Etsuko Furukori
Photos: Shuichi Yuri

Modylas Developer : Yoshimichi Andoh

Modylas, a program that can calculate the trajectories of 10 million atoms simultaneously, will soon be a reality. We talked to developer Yoshimichi Andoh, a researcher at the Susumu Okazaki Laboratory at Nagoya University who is playing a central role in the development project, to ask what kinds of things Modylas can tell us and what the applications for the software will be.

Interviewee

Yoshimichi Andoh Researcher, School of Engineering Nagoya University

Interviewer:

Yoshimi Kubota

2nd year Ph.D candidate Department of Earth and Planetary Science,
School of Science, The University of Tokyo

What kind of program is Modylas?

I liked the name Modylas, so I began by asking where it came from. "Modylas" stand for MOlecular D Ynamics simulation software for LArge System.
In molecular dynamics (MD) calculations, the initial coordinates of all of the atoms making up the groups of molecules (systems), as well as a variety of force-field parameters describing the interactions between atoms, are entered, and then, the Newtonian equations of motion for the all atoms are structure and changes (dynamics) of the system. Since calculating the interaction
between atoms requires an enormous capabilities of the K Computer is the number of calculations, the scale of the construction of algorithms that reduce the systems that can be handled has increased number of communications, enabling the with progress in computers. However, computer to calculate efficiently. Developing existing supercomputers can only handle - Modylas often required the most advanced systems that are several handred thousand - technologies that only a specialist in to several million atoms in size (Fig. 1). Yoshimichi Andoh is a specialist in molecular dynamics. He is both well-versed in computer science and a skilled computer programmer. But even for him, it was not easy to develop software for an advanced supercomputer.
The mades The key th bringing out computing computer science would understand. Up to now, for crucial sections I had pursued research jointly with a software development engineer (from Fujitsu). But in order to conduct joint research smoothly, it was necessary to have a good understanding of computers. And computer science is a field in which new technical terms are being produce coll

The biggest problem was how to efficiently incorporate the Coulomb force (electrostatic atoms, into the MD calculations. The Coulomb force operates to a far enough distance that it can even be felt by human beings. As the Coulomb force is thought to control phenomena in the micro world at the atomic level as well. naturally it must be accurately included in simulations. "On supercomputers up to now, the Particle-Mesh Ewald (PME) method has been used to calculate the Coulomb force This is an approximation calculation method that employs the fast Fourier transformation (FFT). Although it was sufficiently precise, there was a problem in that, as the number of calculation nodes increases, the traffic of communications between nodes resulting from the FFT becomes enormous, and this decreases calculation efficiency. In the case of the K Computer, which will consist of more than 80,000 nodes, a more efficient method of calculating the Coulomb force will have to be used in place of the PME method. Accordngly, we developed a new program the Fast Multipole Method (FMM) With th FMM the force from nearby partices is calculated precisely, while the contributio from more distant particles is treated as group. This results in an algorithm that is capable of high-speed simulation while still preserving a high level of precision (Fig 2) Nevertheless, as the program is far more complex in structure than the PME method, it has almost never been used in actual MD software. We're the first to implement it in MD software on the assumption that it will run on a supercomputer made up of several tens of thousands of nodes." The implementation of FMM is now the bigges selling point of Modylas.

What can Modylas tell us?

So what kind of simulations will be possible using Modylas? Modylas can conduc molecular dynamics calculations for system made up of 10 million atoms, which would take 500 years on existing supercomputers. The origins of the structural stability of biological macromolecular aggregates in the
efficient MD calculation software will be useful for a wide variety of nanoscale research areas, such as predicting protein structures and elucidating the origin of the structure change in cell membranes caused by some diseases.
Dr. Andoh says that another of the pluses of this research is being able to see clear images in simulations. On the day of the interview, he showed me an actual image of a virus particle in water, and I was able to see immediately that it had a very interesting structure. The shell of the virus, made of a protein called a capsid, takes a form in which
By performing calculations on the K computer, it will be possible to track the behavior of all of the approximately 10 million atoms, ranging from the atoms that make up the surrounding water molecules to the atoms that make up the virus. Up to now, we have not clearly understood in scientific terms why viruses become stable when they form this structure. I want to solve this idde the ato ic ing solve th
simulatio

Th. 1 Size and time scale of the systems that are the subject of molecular dynamics (MD) calculations attempt at MD calculations, in 1957 , was performed for a system consisting of only 100 atoms.

What are the applications for Modylas?

A great deal of attention has focused on applications for Modylas in the area of drug discovery It is difficult to determine through experimentation how viruses infect cells, or the molecular mechanism of the response between viruses and immune systems. Researchers hope that all-atom MD simulations will become a new method that can be used instead.
By quantifying the interaction between a irus and a receptor as free energy, we will be able to clarify, at the molecular level, the eason that a virus attaches itself to a specific receptor in the human body. And if we make it so a different molecule with a similar structure attaches itself to the arlor on the virus before the virus ataches itself to the receptor, well be able to block the virus from intruding into the ntructure the cell. Understanding the develure of a virus will also lead to the virus."
In addition, this is also expected to be able to contribute to the development of drug e scale of calculations has expanded along with progress in computers and algorithms.

Andoh Yoshimichi When Dr. Andoh first entered college, he was interested in aerospace engineering. But in his fourth year of the undergraduate
course, he became fascinated by the varied course, he became fascinated by the varied
phenomena created by countless molecules, and he decided to study molecular science. He majored in open environmental science and got his Ph.D for molecular dynamics research into the gas-liquid interface in an alcohol aqueous solution. Subsequently, he conducted research at the Institute for Molecular Science within the National Institutes of Natural Sciences. Since 2008, he
has focused on the development of Modylas at the University of Nagoya, under the direction of Professor Susumu Okazaki. Another of his goals is to complete the "Rokko Zenzan Trekking" event held in Kobe, home of the K Computer

Fig. 2 Calculation of the Coulomb interaction using the FMN Interactions with nearty particles are calculated rigorously. Contributions from more distant particles are clumped
together and expressed as as muttipoles. For particles that together and expressed as multitioles. For partitcles that are even farther away, a hierarchy is introduced, clumping
together particles in an even wider area. This enables calculataions to be conducted at high speed without sacrificicing
calculation precision.
delivery systems (DDS) that use the vesicles, which are matter transport carriers within cells. Vesicles are bag-like structures with the aqueous phase enclosed in a lipid bilayer membrane. The drug is injected into the interior of the vesicle, or into the lipid bilayer membrane, to deliver it efficiently to the
affected area in the body In this DDS affected area in the body. In this DDS clear understanding of basic matters such as the interaction between the lipid membranes making up the vesicle and the encapsulated drug, or the interaction between the vesicle and the cell membrane that is the target of membrane fusion. So new knowledge obtained through MD simulation is needed." obtained through MD simulation is needed.
Currently the calculation efficiency is poor for non-dense systems such as foam formation and the formation of stars in outer space, so these systems appear to be not really suitable for calculation by Modylas. Modylas is particularly good at calculating systems that are filled with materials and have a generally uniform density, as in the case of simulations of viruses in which the water and the target protein are entered and calculations are performed. As long as there is a good idea, Dr. Andoh hopes Modylas will be used for a variety of targets regardless of whether or not they are biomolecules.

"I want to lead the world with unique
 software developed in Japan"

There are not many researchers like Dr Andoh, who combines a basic knowledge of physics and chemistry with programming skills.
Currently the researchers in the molecular dynamics field who do both MD code programming and research are a minority. deally I'd like them to become a majority. There is also a great significance in passing on essential knowledge in Japanese software development to the next generation. "Currently the molecular dynamics community in Japan does not have software that can be used by anyone and is capable of highly efficient calculations that put it on par with the rest of the world. In contrast, the U. S. and Europe began pursuing software development around 20 years ago through
joint research projects that brought together specialists in various fields such as compute science and physics. So in terms of organizational capabilities, Japan is quite bit behind. Naturally its possible to impor software from the United States and use software we would only be using the successive generations we would gradually successive generations we would gradually that form the essence of the sotware This could be said about any field But in order to prevent this kind of hollowing-out of knowledge it's crucial that we start from scratch to create unique state-of-the-art software in Japan." software in Japan
dynamics and various other fields with specialist knowledge will come together to begin the final tuning of Modylas on the K Computer. Bringing together specialists from different fields will undoubtedly result in a definite increase in the calculation speed of each of the software parts. In this process, Dr. Andoh will continue to serve as the captain of the Modylas project and work to optimize overall performance.
"Up to now, we've resolved the difference in terminology among different fields through close communication. In the future as well, we plan to work together to bring the project to a successful conclusion."
The goal is to create a program that reache the top level on the world stage.

Yoshimi Kubota

Ms. Kubota's specialty is the fields of

 paleoclimatology and paleoceanography, whose goa is torer her research topic in the Pha course is climate change in East Asia during the past 40,000 years. She is also interested in the relationship between the growth and decay of civilization and climate change. As a member (and representative for FY 2011) of the group "0 to 1 " (from 0 to 1) made up of volunteers at the Graduate School of Science at The University of Tokyo, she takes part in events to communicate discuss science-related problems. She is also active as a science writer.

【Dr. Andoh as seen from an interviewer's perspective】

At $5: 00$ p. m. on March 11, the day of the Great East Japan Earthquake, Dr. Andoh sent us the following email: "In this type of emergency, it would be especially difficult for Ms. Kubota to travel to idea if we postponed tomorrow's interview." As a result, the interview that had been scheduled for the 12 th was postponed.
This solicitude reflects Dr. Andoh's character. The care he takes in his
research activities needs no introduction but the solicitude he shows toward joint esearchers and the way he takes care of his juniors are also hallmarks of his character. In simulations for the K Computer, he not only takes the lead in pursuing software development but also plays a crucial role in establishing communication among specialists. Dr Andoh himself is conscious of his role as team.

Photos : Hisashi Okumura (Institute for Molecular Science)

Application SPEC Sheet [Modylas]	
Code name	Modyas
Method/algorithm	Molecular dynamics method
Overview / features of code	Made up of a close-range particle calculation section and a long-range FMM calculation section. The basic cells are completely domain segmented and overall communications are eliminated to the greatest extent possible, in order to create a molecular dynamics calculation program capable of more than 10,000 parallelization processes.
Target materials	Biomolecular assemblies in the aqueous phase (viuses, lipid bilayer membranes and micelles)
Development leader	Susumu Okazaki (Nagova University)
Developers / developing institutions	Yoshinori Andoh, Kazushi Fuimoto, Atushi Yamada (Nagoya University), Noriy uki Yoshii (Himeii Dokkyo University), Kazutomo Kawaguchi (Kanazawa University), Kensuke I wahashi, Fumiyasu Mizutani ((nstitute for Molecular Science), Fuitsu (as of FY2010)
Development period	Conceptual design began in FY 2006; completion at the end of FY 2011
Development language/number of lines of source code	Fortran/approximately 20,000 ines
Hardware environment	Can run on Tsukuba T2 (Linux), Fuitisu FX1 (Solaris), K Computer (Linux), other standard supercomputers
Parallelization method	Hybrid parallelization (MP1 and OpenMP)
Parallelization status	Maximum degree of parallelization 8192 cores; process parallelization rate approximately 100% (for particle calculation section) 60% (FMM section)
Software release	Provision in binary format to joint researchers
Related / competing software	Related: REM, emod/Competing: NAMD (U.S.)
Otherfunctions	Cooperation with NANO-IGNTION and GIANT (both developed at hssitute for Molecular Science)

CMSI Calendar

For more information, see the CMSI webpage http://cms-initiative.jp

OFebruary 7, 2011
CMSI Industry-Government-Academia Cooperation Symposium : "Prospects for New Industrial Appications for Computers Simulations

The Industry-G Cooperation Symposium, which was planned by the Industry-Government-Academia
Cooperation Subcommitee and sponser by Cooperation Subcommittee and sponsored by
CMSI, attracted 150 participants from the areas CMSI, attracted 150 participants from the areas
of industry, government and academia. The of industry, government and academia. The
objective of the symposium was to study current industry use of computer simulations from the different perspectives of industry, government and academia, and to discuss
future approaches.
The director of the office for the Promotion of
The director of the Office for the Promotion of
Computing Science Education, Culture, Sports, Science and Technology summarized the government's
guidelines as follows: "In the large-scale guidelines as follows: "In the large-scale
supercomputer project centering on the K supercomputer project centering on the K
Computer, industry, government and academia must work together to increase the nation's

-CMSI Researcher Workshops Date : Scheduled for July $7-8$ and November Date: Scheduled for J
2011 and March 2012 2011 and March 2012 Program : Discussion of application
advancement advancement
OTCC Symposium
Date August $11-12$
Date : August 11-12, 2011
Venue: CMSI Kobe Branch

- Center of Computational Materials

Science Symposium
Date: September $12-13$
Date : September 12-13, 2011
Venue : Institute for Solid State Physics, The
Venue : Institute for Solid State Physics,
Universty of Tokyy
Get-together for computational University offoky
OGet-together for computational
molecular science experimenters molecular science experimenters
Date : Scheduled for November 2011 Date : Scheduled for November 2011 Venue: : Kyoto
CMSI/ Institu
OCMSI / Institute for Materials Research Joint Seminar
Joint Seminar
Date : Scheduled for December 2011 Date : Scheduled for December 2011
Venue: Institute for Materials Research, Tohoku University

OCMSI Industry-Govern Cooperation Symposium

Cooperation Symposium
Date : Scheduled for February
Date : Scheduled for Febr
Venue: Not yet decided
-CMD ${ }^{\circ}$ Workshops (Organized by CMS and Osaka University
With Tutorial Course

- 19 th September 5-9, 2011
Venue : Cybermedia Center, Osaka University
- 2 th - 20th March 6-10, 2012 Institute for Venue : International Institute for
Advanced Studier (Kyoto)
- Asian CMD ${ }^{\circ}$ Workshop in Indonesia - Asian CMD Workshop in Indonesia (supported by Institut Teknologi Bandung)
Date: July 19-22, 2011 Date: July 19-22, 2011
Venue: Pekanbaru (planne - Asian CMD
(supported Workshop in the Philippines (supported by De La Salle University)
Date : Early october 2011 (to be finalized) Date : Early October 2011 (to be fin
- Asian CMD
(Isupported by by Saigon in Unietnersity) - (supported by Saigon University)
Date: Mid-December 2011 (planned) - Asian CMD Workshop in Thailand
Date : Mid-February 2012 (planned)

K Computer News

Opening of CMSI Kobe Branch

On April 4, the CMSI Kobe Branch opened at the Advanced Institute for Computational Science (AICS), home of the "K Computer," the next-generation supercomputer. The Center immediately became a gathering place for CMSI researchers aiming to become world leaders in research througn the use of the Computer. The branc-new facitity fields. A get-together was also held on April 6 at the Kobe Kachoen (bird and flower park), Iocated next to AICS. The response clearly shows a desire to deepen exchanges
with different fieds, and to have such exchanges lead to the cration with different fields, and to have such exchanges lead to the creation of innovation. The Center is planning to hold a seminar on application advancement and other visit the CMSI Kobe Branch.

Bringing Together Industry, Government and Academia-Invited Talk at CMSI Industry-Government-Academia Cooperation Symposium
The Computational Science Anticipated by Researchers Working to Create New Materials and Energy

Kazuhito Hashimoto

Professor, Research Center for Advanced Science and Technology /
Graduate School of Engineering, The University of Tokyo

In basic research in Japan, particularly in the areas of theory and calculation, many talented individuals appear to think that their role is basic research alone - that they are not suited for applied research, that applied research is not as interesting as basic research and so on. But these are misconceptions. Applied research, too, requires a tremendous amount of creativity. I myself come from a basic chemistry background. But around 1990, I realized
that titanium oxide could be used for decomposition of bacteria and bentamination. This is a mere application. Fortunately. This is a mere application. Fortunately, discovered a new phenomenon of science in which a surface becomes extremely which a surface becomes extremety
hydrophilic when it is exposed to light Subsequently I developed this as a practical technology, and its applications have continued to expand to encompass fields ranging from construction to agriculture and civil engineering.
The deployment of research into different fields is actually not that difficult. People who have highly original ideas in the area of basic research appear to be able to produce highly original ideas in applied research as well. In applied research that maintains a focus on the practical applications of the mutual exchange of information with researchers in different fields and the marketplace. In that sense I think it is important for the three CMSI centers and the Kobe supercomputer center to invite company personnel to maintain a presence at the facility on an ongoing basis.

As experimenters, we conduct material design that uses band calculations in an solar cells and visible light photocatalytic materials. In many cases, however, the results of our calculations and the things that we are actually able to synthesize at our current level of calculation are completely different. So what we do is to another until we get lucky and produce one that works. The thing we hope for from computational science specialists is to provide basic support for our intuition. The analysis of mechanisms is also important, but what we really want is a
whery of the direction in which we should proceed in order to increase the ikelihood of producing a useful material. In the field of applied research for he list members and nanomaterials, cademia is grows that we hope for from take one of the missions of research If we contributing to soliety thearch our esearch, it is only by pursuing applied research in cooperation with experimental scientists and companies that we will be able to preserve our "scholarly endeavors" as well. I believe that this is the kind of world that we are entering.

Photo : Shuichi Yuri

जाऽi

Bringing Together Industry, Government and Academia-Invited Talk at CMSI Industry-Government-Academia Cooperation Symposium

HPC Challenges for the Next Decade and Beyond-From Discovery to Applications at the Nano-Bio-Med Frontier

Michael L.Klein

professor, Institute for Computational Molecular Science,
Temple University, Philadelphia PA 19122 USA

CMD®18 Workshop: A First-Hand Report

Hiromi Shima

Department of Physics, Graduate School of Science,
Tokyo University of Science (at the time)
The 18th Computational Materials Design (CMD®) Workshop supported by CMSI was held March 8-12 at the International Institute for Advanced Studies. More than 700 persons from universities and companies have participated in a series of workshops, which center on the design of materials using an actual supercomputer. Hiromi Shima reports on her experiences when she attended the most recent workshop.

I'm engaged in materials research into ferroelectric thin films and piezoelectric substances. So I'm what is commonly referred to as an experimenter. My reason for participating in the most recent workshop was that I wanted to get a foot in the door to begin to learn how to perform simulations. It often happens in the search or more thals that we need to combine two physical pes of materials to achieve the Recently it occurred to we re looking for would go much more efficiently if I could predict to a certain degree through simulations what combinations would be best. I realized that I needed to study to learn how to do this, and I sat at my desk any number of times trying to study, but for some
effort.
Although I had applied to attend the workshop. I'm such a beginner that I was afraid the lectures and hands-on training would be over my head. It was even my first time to use the UNIX system in the hands-on training, so the only thing I could do was to type at the keyboard furiously as instructed. But in the course of finishing the series of calculations for each of the codes, I gradually came to understand what I was doing. I think this was due to the training style, in which lecturers explained everything clearly, starting with the basics and then tutors followed up on what the

lecturers had told us. We learned three computation codes in the five-day workshop. Thinking back on it now that I've completed the workshop, I realize that the order in which they were covered was extremely well thought-out.
I couldn't say that I now have a thorough understanding of the CMD ${ }^{\circledR}$ method or I'm at the level where I could actually perform simulations for my own material systems But with regard to calculation I think Ive progressed from being a complete lay person to the beginner level. The most important result of this experience, and the one that will have an impact on the future as well, is that I got a definite response from being is the ard at it.

Photo : Masaaki Geshi (Osaka University)

Tutorial Courses Attendees can select the cours hey want to attend Beginner's Course Lectures on the studies and special lectures studies and special lectures Lectures on fundamentals of ab-initio
calculations Introductory hands-on training ab-initio calculations (covering 3 simulation codes) Advanced Course Lectures on the studies and special lectures - CMD ${ }^{\otimes}$ Intensive hands-on training (concentrating on 2 simulation codes
chosen by the participant from chosen by the participant fro
among the 5 codes offered) Computational Nanomaterials Design Expert Course
Lectures on the latest CMD* case studies and special lectures CMD $^{\circ}$ practicum
omputational Nan Supercomputer Course Lectures on the latest CMD° case studies and special lectures CMD® practicum (RSPAC
Capacity: 25 trainees (but traines ar trainees: No charge own travel costs and meals)
has become routine. So, algorithms have played a key role, and in the latter case we had to wait for big machines to catch up. In biology, interesting things are micron size. They are assemblies of nanoscale machines, And these machines in the cell wall are membrane proteins that either transport ions or particles in and out of the cell. By understanding how these machines work, nature to do things that nature didn't do. This is a frontier area of material science. But the length scales are not appropriate to density functional theory. Heroic calculations on current supercomputers thousand lipids. But we are still a long way short of an interesting size. That has led to different scales; the bridging of length scales Unfortunately, the trouble is where we want to join a quantum method to a classical atomistic method. There are as many methodologies for doing this as there are intrinsically tough problem to deal with. In summary, we need more than just the big hardware. We need algorithms. We do need heric calculations that could only possibly But we also need capacity computing. The latter is especially important to solve real world problems

Photo : Shuichi Yuri

